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Hopf-Galois Theory

An extension K/k is Hopf-Galois if there is a k-Hopf algebra H and a
k-algebra homomorphism µ : H → Endk(K ) such that

µ(ab) =
∑

(h) µ(h(1)(a)µ(h(2))(b)

KH = {a ∈ K | µ(h)(a) = ǫ(h)a ∀h ∈ H} = k

µ induces I ⊗ µ : K#H
∼=
→ Endk(K )
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Hopf-Galois theory was developed to address the failure of ordinary Galois
theory for non-separable extensions.

However, Greither and Pareigis [3] realized that separable, but not
necessarily normal, extensions could be given Hopf-Galois structures.

Indeed, a field extension K/k which is Galois under the action of
G = Gal(K/k) is canonically Hopf-Galois with respect to the action of
H = k[G ] by linear independence of characters.
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What was also observed (which are the cases we will examine here), is that
an already Galois extension K/k with G = Gal(K/k) can be Hopf-Galois
with respect to other k-Hopf algebras, besides k[G ].

Normal or not, the Greither-Pareigis theory enumerates the different
possible structures.
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Let K/k be a finite Galois extension with G = Gal(K/k). G acting on
itself by left translation yields an embedding

λ : G →֒ B = Perm(G )

Definition: N ≤ B is regular if N acts transitively and fixed point freely on
G .

Theorem

[3] The following are equivalent:

There is a k-Hopf algebra H such that K/k is H-Galois

There is a regular subgroup N ≤ B s.t. λ(G ) ≤ NormB (N) where N
yields H = (K [N])G .

We note that N must necessarily have the same order as G , but need not
be isomorphic.
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To organize the enumeration of the Hopf-Galois structures, one considers

R(G ) = {N ≤ B |N regular and λ(G ) ≤ NormB (N)}

which are the totality of all N giving rise to H-G structures, which we can
subdivide into isomorphism classes given that N need not be isomorphic to
G , to wit, let

R(G , [M]) = {N ∈ R(G ) | N ∼= M}

for each isomorphism class [M] of group of order |G |.
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Now, the enumeration of R(G , [M]) for different pairings of groups of
different types has been extensively studied by the presenter, as well as
Byott, Caranti, Childs, and others.

For example, G cyclic, elementary abelian, G = Sn, G = An, |G | = mp, G
simple, G ,M nilpotent and more.

What we shall consider is when R(G , [M]) = Ø.
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(Characteristic) Subgroup Lattices

The technique we will employ is different than those used in earlier
analyses, which relied on structural facts about groups of a given order or
isomorphism type, in so far as what the embedding λ(G ) ≤ NormB (N)
permitted or prevented.

Rather we whall utilize the analog of the classical correspondence between
sub-groups of the Galois group and intermediate fields.

In the setting of a Hopf-Galois extension K/k with action by a k-Hopf
algebra H, one has:

Theorem

The correspondence
Fix : {k − sub-Hopf algebras of H} → {subfields k ⊆ F ⊆ K} given by

Fix(H ′) = {z ∈ K | h(z) = ǫ(h)z ∀h ∈ H ′}

(where H ′ ⊆ H) is injective and inclusion reversing.
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From Chase and Sweedler [1], and extrapolated in Greither-Pareigis, and in
TARP-SES [6, Prop 2.2] we have:

Proposition

For a normal extension K/k with G = Gal(K/k) which is Hopf-Galois
with respect to the action of HN = (K [N])G the sub-Hopf algebras of HN

are of the form HP = (K [P ])G where P is any G-invariant subgroup of N.

And as any intermediate field between k and K corresponds to a subgroup
J ≤ G , where Fix(HP) = F = K J , one has a modification of the
aforementioned Galois correspondence.
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The following is basically [6, Thm. 2.4, Cor. 2.5 and 2.6].

The correspondence

Ψ : {subgroups of N normalized byλ(G )} −→ {subgroups of G}

given by
Ψ(P) = OrbP(iG ) = {q(iG ) | q ∈ P} = J

is injective and KHP = F = K J . (Note, J is a subgroup of G .)

Note also that |P | = [K : F ] = |J|.
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We observe that if P is a characterstic subgroup of N then it is
automatically normalized by λ(G ), and, as mentioned above |Ψ(P)| = |P |.

As such, since |N| = |G | by regularity, if m
∣

∣|G | we let

Subm(G ) = {subgroups of G of order m}

CharSubm(N) = {characteristic subgroups of N of order m}

and thus we have an injective correspondence

Ψ : CharSubm(N)→ Subm(G )

for each m
∣

∣|G | so that |CharSubm(N)| ≤ |Subm(G )|.
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The question we consider is, for a given N where |N| = |G |, can we
discern whether |CharSubm(N)| > |Subm(G )| for at least one m, in which
case one must conclude that R(G , [N]) = Ø?

What is seemingly unlikely about this approach yielding anything is that
one expects the class of characteristic subgroups to be somewhat meager,
certainly in comparison to the collection of all subgroups. But, for those of
a given order m dividing |G | this actually happens relatively often.
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We start with the first class of examples where this analysis applies.
The 5 groups of order 12 are Q3,C12,A4,D6, and C6 × C2 and by direct
computation we find three pairings R(G , [M]) which are empty by this
criterion.

(G , [M]) = (A4,Q3)→ |Sub6(G )| = 0 and |CharSub6(M)| = 1

(G , [M]) = (A4,C12)→ |Sub6(G )| = 0 and |CharSub6(M)| = 1

(G , [M]) = (A4,D6)→ |Sub6(G )| = 0 and |CharSub6(M)| = 1

which is a modest set of examples, but representative of some basic motifs
which we’ll explore in more detail presently.
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Examining the full table of |R(G , [M])| we see where these fit in, and also
observe the two other empty pairings.

G ↓ M → Q3 C12 A4 D6 C6 × C2

Q3 2 3 12 2 3

C12 2 1 0 2 1

A4 0 0 10 0 4

D6 14 9 0 14 3

C6 × C2 6 3 4 6 1

We highlight the fact that for G = A4 and M = Q3,D6, and C12 that
|Sub6(G )| = 0 and |CharSub6(M)| = 1.

That is, G has no-subgroup of index 2, which is a basic exercise in group
theory, and Q3,D6, and C6 × C2 have unique (hence characteristic) subgroups
of index 2.

As it turns out, examples like this are quite common instances of the
|CharSubm(N)| > |Subm(G )| condition.
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Index 2 Subgroups - One Versus None

Following Nganou [7] we can apply some basic, yet very useful, group
theory facts to examine the index 2 subgroups of a given group.

Theorem ([7])

For a finite group G, where n = |G |, the subgroup G 2 = 〈{g2 | g ∈ G}〉 is
such that

|Subn/2(G )| = |Subn/2(G/G 2)|

where, since [G ,G ] ⊆ G 2, G/G 2 is an elementary Abelian group of order
2m. Moreover, |Subn/2(G/G 2)| = 2m − 1 since the index 2 subgroups
correspond to hyperplanes in the finite vector space G/G 2.

i.e. |Subn/2(G )| = [G : G 2]− 1.
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As a corollary to this, he also notes:

Corollary

If G is a finite group then G has no index 2 subgroups iff [G : G 2] = 1 iff
G is generated by squares. And G has a unique index 2 subgroup iff
[G : G 2] = 2.

And indeed, A4 has no index 2 subgroups since it is generated by squares
since every three cycle is the square of its inverse.
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There are other examples of even order groups without index 2 subgroups.
In degree 24, let G = SL2(F3).

There are 15 groups M of order 24, of which 12 have the property that
|CharSub12(M)| > 0.

If M = C3 ⋊ C8, C24, S4, or C2 × A4 then |Sub12(M)| = 1 so
|CharSub12(M)| = 1.

If M = C3 ⋊ Q2, D12, C2 × (C3 ⋊ C4), C12 × C2 or C3 × D4 then
|Sub12(M)| = 3 and |CharSub12(M)| = 1.

If M = C4 × S3 or (C6 × C2)⋊ C2 then |CharSub12(M)| = 3.

If M = C2 × C2 × S3 then |Sub12(M)| = 7 and |CharSub12(M)| = 1.

In fact, there are only 3 non-empty R(SL2(F3), [M]), namely
M = SL2(F3), C3 × Q2 and C6 × C2 × C2.

[Note: Not all the cases where the pairing is empty correspond to M
having a unique subgroup of index 2, nonetheless, the number of
characteristic subgroups of M of index 2 is larger than the number of
index 2 subgroups of G .]
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We present the full table of |R(G , [M])| values, highlighting those determined via this criterion.

G ↓ M → C3 ⋊ C8 C24 SL2(F3) C3 ⋊ Q2 C4xS3 D12 C2x(C3 ⋊ C4) (C6xC2)⋊ C2 C12xC2 C3xD4 C3xQ2 S4 C2xA4 C2xC2xS3 C6xC2xC2

C3 ⋊ C8 4 6 24 4 0 4 0 0 0 6 6 0 0 0 0

C24 4 2 0 4 0 4 0 0 0 2 2 0 0 0 0

SL2(F3) 0 0 10 0 0 0 0 0 0 0 8 0 0 0 8

C3 ⋊Q2 28 18 0 28 56 28 28 56 18 18 6 0 0 28 6

C4xS3 16 12 0 28 56 28 52 56 30 18 6 24 0 40 12

D12 4 6 0 28 56 28 76 56 42 18 6 0 0 52 18

C2x(C3 ⋊ C4) 24 12 0 28 56 28 36 56 30 18 6 0 48 32 12

(C6xC2)⋊ C2 12 6 0 28 56 28 60 56 42 18 6 24 48 44 18

C12xC2 8 4 0 12 24 12 20 24 10 6 2 0 0 16 4

C3xD4 4 2 0 12 24 12 28 24 14 6 2 16 0 20 6

C3xQ2 12 6 16 12 24 12 12 24 6 6 2 0 0 12 2

S4 0 0 0 0 0 0 0 0 0 0 0 8 36 24 48

C2xA4 0 0 0 0 0 0 0 0 0 0 8 12 16 8 8

C2xC2xS3 0 0 0 228 456 228 228 456 126 126 42 48 0 152 24

C6xC2xC2 0 0 0 84 168 84 84 168 42 42 14 0 112 56 8

We note that there are total of 76 different (G , [M]) for which R(G , [M]) = Ø, of which this method predicted 20.
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As an interesting aside, one can find extensions F/Q where
Gal(F/Q) ∼= SL2(F3).

For example, Heider and Kolvenbach [4], found that the splitting field of

f (x) = x8 + 9x6 + 23x4 + 14x2 + 1 ∈ Z[x ]

is one such SL2(F3) Galois extension.
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We use the notation
I2(G ) = [G : G 2]− 1

for the number of index 2 subgroups, as given in Crawford and Wallace [8]
who, using Goursat’s theorem, present a number of basic facts, namely

I2(G1 × G2) = I2(G1)I2(G2) + I2(G1) + I2(G2)

If I2(G ) > 0 then I2(G ) ≡ 1, or 3 (mod 6)

Nganou also shows this by observing that (G1 × G2)
2 = G 2

1 × G 2
2 and

therefore that [G1 × G2 : (G1 × G2)
2] = [G1 : G

2
1 ][G2 : G

2
2 ], and also that if

|G | is odd then I2(G ) = 0 automatically.

In actuality, the full machinery of Goursat’s theorem, which is used to
count subgroups of arbitrary direct products, is not needed since, for
subgroups of index 2, and later on index p, it’s staightforward to
enumerate the subgroups via the subgroup indices.
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Some examples of this were seen in the degree 24 examples earlier, such as

I2(C2 × A4) = I2(C2)I2(A4) + I2(C2) + I2(A4) = 1 · 0 + 0 + 1 = 1

I2(C12 × C2) = I2(C12)I2(C2) + I2(C12) + I2(C2) = 1 · 1 + 1 + 1 = 3

I2(C3 × D4) = I2(C3)I2(D4) + I2(C3) + I2(D4) = 0 · 3 + 0 + 3 = 3

I2(C4 × S3) = I2(C4)I2(S3) + I2(C4) + I2(S3) = 1 · 1 + 1 + 1 = 3
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What is most interesting about the formula

I2(G1 × G2) = I2(G1)I2(G2) + I2(G1) + I2(G2)

is that it allows us to readily generate examples of (even order) groups
with 0 or 1 index two subgroups given that, without loss of generality,
I2(G1) = 0 and I2(G2) = 0 or 1 for then I2(G1 × G2) = 0 or 1 as well.
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If I2(G1) = 0 and I2(G2) = 0 then, of course, I2(G1 × G2) = 0.

If G1 has odd order then I2(G1) = 0 so if either G1 has odd order and G2

even, or both G1 and G2 are even, with I2(G1) = I2(G2) = 0 as in the table
below, then I2(G1 × G2) = 0.

A4

SL2(F3)

(C2 × C2)⋊ C9

(C4 × C4)⋊ C3

C 4
2 ⋊ C3

C 3
2 ⋊ C7

C 4
2 ⋊ C5

any non-Abelian simple group
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If I2(G1) = 0 and I2(G2) = 1 then I2(G1 × G2) = 1.

For example:

G1

Cr for r odd

A4

SL2(F3)

(C2 × C2)⋊ C9

(C4 × C4)⋊ C3

C 4
2 ⋊ C3

C 3
2 ⋊ C7

C 4
2 ⋊ C5

any non-Abelian simple group

G2

Cs for s even

Sn for n ≥ 3

Dn for n odd

C3 ⋊ C4

(C3 × C3)⋊ C2

the non-split extension of
SL2(F3) by C2 (AKA the
non-split extension of C2 by S4)
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The formula for computing I2 of a direct product of two groups can be
generalized to a direct product of any number of groups.

For example, in degree 36

I2(C3 × C3 × C4) = I2(C3)I2(C3 × C4) + I2(C3) + I2(C3 × C4)

= 0 · 1 + 0 + 1

= 1

which is in agreement with the computation done directly by [M : M2]− 1.

Note: If we expand out I2(G1 × G2 × G3) then we find that

I2(G1×G2 × G3)

=e1(I2(G1), I2(G2), I3(G3)) + e2(I2(G1), I2(G2), I3(G3))+

e3(I2(G1), I2(G2), I3(G3))

=I2(G1) + I2(G2) + I2(G3) + I2(G1)I2(G2) + I2(G1)I2(G3) + I2(G2)I2(G3)+

I2(G1)I2(G2)I2(G3)
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Also, it’s not hard to prove that this ’product formula’ for I2(G1 × G2)
holds for semi-direct products of cyclic groups, since one can show that

(Cr ⋊ Cs)
2 = C 2

r ⋊ C 2
s

so that, for example:

I2(C3 ⋊ C4) = I2(C3)I2(C4) + I2(C3) + I2(C4) = 0 · 1 + 0 + 1 = 1
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If we define

z2(n) = the number of groups of order n with no index two subroups

u2(n) = the number of groups of order n with one index two subroup

then we have empty pairings R(G , [M]) corresponding to z2(n) ∗ u2(n) for n ≤ 256.
n z2 u2 z2 ∗ u2 (# of groups of order n)2

12 1 2 2 25

24 1 4 4 225

36 2 6 12 196

48 2 8 16 2704

56 1 2 2 169

60 2 6 12 169

72 2 13 26 2500

80 1 3 3 2704

84 2 6 12 225

96 3 15 45 53361

108 7 18 126 2025

120 2 12 24 2209

132 1 4 4 100

144 5 25 125 38809

156 2 9 18 324

160 1 5 5 56644

168 5 12 60 3249

180 3 18 54 1369

192 9 39 351 2380849

204 1 6 6 144

216 8 45 360 31329

228 2 6 12 225

240 4 26 104 43264

252 5 18 90 2116

←
note that the |CharSub12(M)| > |Sub12(G )|
criterion holds for 10 pairings overall
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Beyond index two, there may be characteristic subgroups of different
orders. For index p, one replaces G 2 with G p[G ,G ] where
G p = 〈{gp | g ∈ G}〉 with the [G ,G ] factor appearing in order to make
G/G p[G ,G ] an elementary Abelian p group, whose index p subgroups are
in bijective correspondence with the normal index p subgroups of G .

(Note: If G is a p-group already then G p[G ,G ] is the Frattini subgroup.)

As such, one replaces I2(G ) with Np(G ) ([8, remarks following Thm. 7])
where

Np(G ) =
pk − 1

p − 1

=
[G : G p[G ,G ]]− 1

p − 1

which is, again, the number of hyperplanes in the resulting finite vector
space.
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Using GAP, [2] one can readily enumerate the subgroups, both
characteristic or not, of each of the different groups of a given order

We present a table of some compiled counts of the number of pairs
R(G , [M]) which are forced to be empty by this criterion (which we denote
|RZ |) as compared with square of the number of groups of order n
(denoted |R |2) representing all possible pairings of groups of order n.
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n |RZ | |R |2

4 0 4

5 0 1

6 0 4

7 0 1

8 0 25

9 0 4

10 0 4

11 0 1

12 3 25

13 0 1

14 0 4

15 0 1

16 5 196

17 0 1

18 2 25

19 0 1

20 0 25

21 0 4

22 0 4

23 0 1

24 20 225

25 0 4

26 0 4

27 0 25

28 0 16

29 0 1

30 0 16

31 0 1

32 38 2601

33 0 1

n |RZ | |R |2

34 0 4

35 0 1

36 34 196

37 0 1

38 0 4

39 0 4

40 11 196

41 0 1

42 0 36

43 0 1

44 0 16

45 0 4

46 0 4

47 0 1

48 244 2704

49 0 4

50 2 25

51 0 1

52 0 25

53 0 1

54 8 225

55 0 4

56 15 169

57 0 4

58 0 4

59 0 1

60 28 169

61 0 1

62 0 4

63 0 16

n |RZ | |R |2

64 1576 71289

65 0 1

66 0 16

67 0 1

68 0 25

69 0 1

70 0 16

71 0 1

72 422 2500

73 0 1

74 0 4

75 1 9

76 0 16

77 0 1

78 0 36

79 0 1

80 149 2704

81 5 225

82 0 4

83 0 1

84 28 225

85 0 1

86 0 4

87 0 1

88 4 144

89 0 1

90 8 100

91 0 1

92 0 16

93 0 4

n |RZ | |R |2

94 0 4

95 0 1

96 4197 53361

97 0 1

98 2 25

99 0 4

100 20 256

101 0 1

102 0 16

103 0 1

104 11 196

105 0 4

106 0 4

107 0 1

108 327 2025

109 0 1

110 0 36

111 0 4

112 92 1849

113 0 1

114 0 36

115 0 1

116 0 25

117 0 16

118 0 4

119 0 1

120 350 2209

121 0 4

122 0 4

123 0 1

n |RZ | |R |2

124 0 16

125 0 25

126 24 256

127 0 1

128 366329 5419584

129 0 4

130 0 16

131 0 1

132 12 100

133 0 1

134 0 4

135 0 25

136 14 225

137 0 1

138 0 16

139 0 1

140 6 121

141 0 1

142 0 4

143 0 1

144 6790 38809

145 0 1

146 0 4

147 2 36

148 0 25

149 0 1

150 26 169

151 0 1

152 4 144

153 0 4
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R(Cpn, [A]) Revisited

Lastly, we consider an already solved problem!

For G = Cpn , for each pr |pn one has, of course, |Subpr (G )| = 1.

For a non-cyclic Abelian p-group M of order pn, one has that
M ∼= Cpλ1 × Cpλ2 · · · × Cpλt where λ1 + λ2 + · · ·+ λt = n is a partition,
where, WLOG λ1 ≤ λ2 ≤ · · · ≤ λt .
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Not unexpectedly, a given non-cyclic Abelian p-group has many subgroups
for each order. Tarnauceanu and Toth, [9], aggregate a number of older
results as:

Theorem

For every partition µ � λ (i.e. µi ≤ λi) the number of subgroups of type µ
in Gλ is

αλ(µ; p) =
∏

i≥1

p(ai−bi )bi+1

(

ai − bi+1

bi − bi+1

)

p

,

where λ′ = (a1, . . . ) and µ′ = (b1, . . . ) are the partitions conjugate to λ
and µ, respectively, and

(

n

k

)

p

=

∏n
i=1(p

i − 1)
∏k

i=1(p
i − 1)

∏n−k
i=1 (p

i − 1)

is the Gaussian binomial coefficient (it is understood that
∏m

i=1(p
i − 1) = 1 for m = 0).
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In [5] Kerby and Turner (extending an old result due to Reinhold Baer)
show that the characteristic subgroups of M of order pr correspond to
partitions/tuples of r , a = {ai} termed ’canonical’, namely

ai ≤ ai+1 for all i ∈ {2, . . . , t} and

ai+1 − ai ≤ λi+1 − λi for all i ∈ {1, . . . , t − 1}

where, the total number of subgroups of order r would be the total
number of such partitions for each r from 1 to n.
What one discovers is that for sufficiently large n there are various r ≤ n
for which there are more than one canonical partitions of r .
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For example, if M = Cp × Cp3 (n = 4) there are two canonical paritions of
2, namely {1, 1} and {0, 2}, which therefore correspond to two
characteristic subgroups of order p2.

As such R(Cp4 , [Cp × Cp3 ]) = Ø.
Another example is for M = Cp × Cp4 , where there are two characteristic
subgroups of order p2 and two of order p3.

For n = 6 we have four different partitions of n which each give rise to
more than one canonical tuples for subgroups of particular orders, namely
6 = 1 + 2 + 3 = 1 + 1 + 4 = 2 + 4 = 1 + 5, and thus

R(Cp6, [Cp × Cp2 × Cp3]) = Ø

R(Cp6, [Cp × Cp × Cp4 ]) = Ø

R(Cp6, [Cp2 × Cp4 ]) = Ø

R(Cp6, [Cp × Cp5 ]) = Ø
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Looking at larger n, we observe that the fraction of partions of n which give rise to > 1
characteristic subgroups of some order approaches 1.

n nc np nc/np

1 0 1 0

2 0 2 0

3 0 3 0

4 1 5 0.2

5 1 7 0.142

6 4 11 0.363

7 4 15 0.266

8 10 22 0.454

9 13 30 0.433

10 23 42 0.547

11 27 56 0.482

12 52 77 0.675

13 60 101 0.594

14 94 135 0.696

15 118 176 0.670

16 175 231 0.757

17 213 297 0.717

18 310 385 0.805

19 373 490 0.761

20 528 627 0.842

Here nc denotes the number of paritions of n
which give rise to more than one canonical pari-
tion for a given r ≤ n, and np is the number of
paritions of n.
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The takeaway from this is that we should expect R(Cpn , [M]) to be empty
for most non-cyclic Abelian p-groups.

Of course, this is not a new result, but it’s interesting to compare this
method as compared to the usual argument which relies on the
impossibility of G ≤ Hol(N) if G is cyclic of order pn and N is a non-cyclic
p-group of the same order.
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Thank you!
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